ToolboxPerformance
Jump to navigation
Jump to search
PLS_Toolbox Performance
The following performance results are for general comparison and expectation. Your own mileage may vary.
| Matlab Versoin | PLS_Toolbox Version | Operating System | System Description | Data Description | Algorithm | Performance Result |
|---|---|---|---|---|---|---|
| 2015a | 8.1.1 | OS X El Capitan | 2.8 GHz Intel, 16 GB ram | cell | cell |
Table 1. Properties of different cross-validation methods in Solo and PLS_Toolbox.
| Venetian Blinds | Contiguous Blocks | Random Subsets | Leave-One Out | Custom | |
|
| |||||
|
|
| ||||
|
|
Table 2. Performance of nnon-linear methods
| Venetian Blinds | Contiguous Blocks | Random Subsets | Leave-One Out | Custom | |
| Test sample selection scheme |
| ||||
| '100 Samples | |||||
| 500 Samples |
|
| |||
| 1000 samples |
|
Table 2. Performance of nnon-linear methods
| Venetian Blinds | Contiguous Blocks | Random Subsets | |
| Test sample selection scheme |
| ||
| Parameters |
| ||
| Number of sub-validation experiments |
|
Table 3. ANN
| Venetian Blinds | Contiguous Blocks | Random Subsets | |
| Test sample selection scheme |
| ||
| Parameters |
| ||
| Number of sub-validation experiments |
|
Table 4. SVM
| 100 variables | 500 variables | 1000 variables | |
| 100 samples |
| ||
| 500 samples |
| ||
| 1000 samples |
|