Peaksigmoid

From EVRI Test Wiki 02192024
Revision as of 12:49, 1 August 2016 by imported>Mathias (→‎Outputs)
Jump to navigation Jump to search

Purpose

Outputs a sigmoid function.


Synopsis

[y,y1,y2] = peaksigmoid(x,ax)


Inputs

  • x = 3 element vector where x(1) = coefficient, x(2) = offset and x(3) is equal to the decay constant


Outputs

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{1-e^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]}


  • y(2) = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\operatorname{d}\!y\over\operatorname{d}\!{x}_{i}}}
  • y(3) = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\operatorname{d^2}\!y\over\operatorname{d}\!{{x}_{i}}^{2}}}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\operatorname{d}\!y\over\operatorname{d}\!{x}_{i}}}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right] }