Peaksigmoid
Purpose
Outputs a sigmoid function.
Synopsis
- [y,y1,y2] = peaksigmoid(x,ax)
Inputs
- x = 3 element vector where
- x(1) = coefficient
- x(2) = offset
- x(3) = decay constant
Outputs
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}} {{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( {1}+{{x}_{2}} \right)}} \right] \right]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+1} \right] \right]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {{x}_{4}}{{\operatorname{e}}^{\frac{-4\ln \left( 2 \right){{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}}{x_{3}^{2}}}}+\left( 1-{{x}_{4}} \right)\left[ \frac{x_{3}^{2}}{{{\left( {{a}_{i}}-{{x}_{2}} \right)}^{2}}+x_{3}^{2}} \right] \right]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( {{a}_{i}},\mathbf{x} \right)={{x}_{1}}\left[ {}+\left( 1-{{x}_{4}} \right)\left[ \frac{1-x_{3}^{2}}{{{\left( \right)}+x_{3}^{2}} \right] \right]}
- y(1) =
- y(2) = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\operatorname{d}\!y\over\operatorname{d}\!{x}_{i}}}
- y(3) = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\operatorname{d^2}\!y\over\operatorname{d}\!{{x}_{i}}^{2}}}